English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chemical Research in Toxicology 2000-Mar

Metabolism of N'-nitrosonornicotine enantiomers by cultured rat esophagus and in vivo in rats.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
E J McIntee
S S Hecht

Keywords

Abstract

People who use tobacco products are exposed to considerable amounts of N'-nitrosonornicotine (NNN), a well-established esophageal carcinogen in rats. NNN is believed to play a significant role as a cause of esophageal and oral cavity cancer in smokers and snuff dippers. The carcinogenicity of NNN is dependent on its metabolic activation. However, virtually all studies carried out to date on NNN metabolism have used racemic material. In this study, we examined the metabolism of [5-(3)H]-(S)-NNN and [5-(3)H]-(R)-NNN in cultured rat esophagus and in vivo in rats. Cultured rat esophagus metabolized (S)-NNN (1 microM) predominantly to products of 2'-hydroxylation, 4-oxo-4-(3-pyridyl)butanoic acid (keto acid) and 4-hydroxy-1-(3-pyridyl)-1-butanone (keto alcohol). In contrast, the major metabolite of (R)-NNN under these conditions was 4-hydroxy-4-(3-pyridyl)butanoic acid (hydroxy acid), a product of NNN 5'-hydroxylation. The 2'-hydroxylation:5'-hydroxylation metabolite ratio ranged from 6.22 to 8.06 at various time intervals in the incubations with (S)-NNN, while the corresponding ratios were 1.12-1.33 in the experiments with (R)-NNN. These differences were statistically significant (P<0.001). Since 2'-hydroxylation is believed to be the major metabolic activation pathway of NNN in the rat esophagus, the results demonstrate that (S)-NNN is metabolically activated more extensively than (R)-NNN in this tissue, and therefore may be more carcinogenic. Rats were treated with 0.3 mg/kg of [5-(3)H]-(R)-NNN, [5-(3)H]-(S)-NNN, or racemic [5-(3)H]NNN by gavage, and the urinary metabolites were analyzed. The major metabolites were hydroxy acid and keto acid. As in the in vitro studies, products of 2'-hydroxylation predominated in the urine of the rats treated with (S)-NNN while products of 5'-hydroxylation were more prevalent in the rats treated with (R)-NNN. 2'-Hydroxylation:5'-hydroxylation metabolite ratios ranged from 1.66 to 2.04 in the urine at various times after treatment with (S)-NNN, while the ratios were 0.398-0.450 for the rats treated with (R)-NNN (P<0.001). The results of this study provide new insights into NNN metabolism in rats and suggest that the carcinogenicity of (S)-NNN, the predominant enantiomer in tobacco products, may be greater than that of (R)-NNN or racemic NNN.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge