English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Phytochemistry 2013-Oct

Metabolomic analysis of isonitrosoacetophenone-induced perturbations in phenolic metabolism of Nicotiana tabacum cells.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Ntakadzeni E Madala
Paul A Steenkamp
Lizelle A Piater
Ian A Dubery

Keywords

Abstract

Plants have developed biochemical and molecular responses to adapt to different stress environments. One of the characteristics of the multi-component defence response is the production of defence-related metabolites. Plant defences can be triggered by various stimuli, including synthetic or naturally occurring molecules, especially those derived from pathogens. In the current study, Nicotiana tabacum cell suspensions were treated with isonitrosoacetophenone (INAP), a subcomponent of a plant-derived stress metabolite with anti-fungal and anti-oxidant properties, in order to investigate the effect thereof on cellular metabolism. Subsequent metabolomic-based analyses were employed to evaluate changes in the metabolome. UPLC-MS in conjunction with multivariate data analyses was found to be an appropriate approach to study the effect of chemical inducers like INAP on plant metabolism in this model system. Principal component analysis (PCA) indicated that INAP is capable of inducing time-dependent metabolic perturbations in the cultured cells. Orthogonal projection to latent structures discriminant analysis (OPLS-DA) revealed metabolites of which the levels are affected by INAP, and eight of these were tentatively annotated from the mass spectral data and online databases. These metabolites are known in the context of plant stress- and defence responses and include benzoic- or cinnamic acid derivatives that are either glycosylated or quinilated as well as flavonoid derivatives. The results indicate that INAP affects the shikimate-, phenylpropanoid- and flavonoid pathways, the products of which may subsequently lead to an anti-oxidant environment in vivo.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge