English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Toxicology Mechanisms and Methods 2017-Nov

Metabolomic approach to understand the acute and chronic hepatotoxicity of Veratrum nigrum extract in mice based on ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Ziheng Wei
Qingqing Qian
Xu Dong
Na Li
Guangchun Sun
Songyan Gao
Xin Dong

Keywords

Abstract

Veratrum nigrum L. (VN) is a poisonous traditional Chinese medicine herb present since thousands of years in China. Clinical studies have shown that VN has the ability to cause hepatotoxicity, which severely limits its clinical use. The mechanism of its hepatotoxicity has not been fully elucidated. The purpose of this study was to develop and characterize a model of acute and chronic hepatotoxicity induced by Veratrum nigrum L. extract (VNE) to understand the mechanism of liver tissue metabolomics approach using on ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOFMS). Mice were administered with VNE in the acute and chronic phases. Histopathologic inspections and biochemistry analysis disclosed severe liver damage after exposure to VNE. A partial least-squares discriminant analysis (PLS-DA) of the metabolomic profiles of rat liver tissues highlighted a number of metabolic disturbances induced by VNE, focusing on purine and pyrimidine metabolism, tryptophan metabolism, phospholipid metabolism, sphingolipid metabolism and fatty acid metabolism. These findings could well explain VNE-induced acute and chronic hepatotoxicity and reveal several potential biomarkers associated with this toxicity. This indicates that UHPLC-Q-TOFMS-based metabolomics approach demonstrated its feasibility and allowed a better understanding of VNE-induced liver toxicity dynamically.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge