English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Phytoremediation 2018-Jun

Metal resistant rhizobia and ultrastructure of Anthyllis vulneraria nodules from zinc and lead contaminated tailing in Poland.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Marzena Sujkowska-Rybkowska
Rafał Ważny

Keywords

Abstract

This present paper studies the response of Anthyllis vulneraria-Rhizobium symbiosis to heavy metal stress. The symbiotic rhizobium bacteria isolated from root nodules of A. vulneraria from zinc and lead wastes were examined in this project. Light microscopy (LM) and transmission electron microscopy (TEM) were used to analyze the nodule anatomy and ultrastructure and conduct a comparison with nonmetal-treated nodules. 16S ribosomal DNA sequence analysis of bacteria isolated from metal-treated nodules revealed the presence of Rhizobium metallidurans and Bradyrhizobium sp. In regard to heavy metal resistance/tolerance, a similar tolerance to Pb was shown by both strains, and a high tolerance to Zn and a lower tolerance to Cd and Cu by R. metallidurans, whereas a high tolerance to Cd and Cu and a lower tolerance to Zn by Bradyrhizobium were found. The nodules of Anthyllis from metal-polluted tailing sites were identified as the typical determinate type of nodules. Observed under TEM microscopy changes in nodules ultrastructure like: (1) wall thickening; (2) infection thread reduction; (3) vacuole shrinkage; (4) synthesis of phenolics in vacuoles; (5) various differentiation of bacteroids and (6) simultaneous symbiosis with arbuscular mycorrhiza fungi could be considered as a form of the A.vulneraria-Rhizobium symbiosis adaptation to metal stress.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge