English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cancer Research 2016-Oct

Metastatic Progression of Prostate Cancer Is Mediated by Autonomous Binding of Galectin-4-O-Glycan to Cancer Cells.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Chin-Hsien Tsai
Sheue-Fen Tzeng
Tai-Kuang Chao
Chia-Yun Tsai
Yu-Chih Yang
Ming-Ting Lee
Jiuan-Jiuan Hwang
Yu-Ching Chou
Mong-Hsun Tsai
Tai-Lung Cha

Keywords

Abstract

Metastatic prostate cancer continues to pose a difficult therapeutic challenge. Prostate cancer progression is associated with aberrant O-glycosylation of cancer cell surface receptors, but the functional impact of such events is uncertain. Here we report spontaneous metastasis of human prostate cancer xenografts that express high levels of galectin-4 along with genetic signatures of EGFR-HER2 signaling and O-glycosylation. Galectin-4 expression in clinical specimens of prostate cancer correlated with poor patient survival. Galectin-4 binding to multiple receptor tyrosine kinases stimulated their autophosphorylation, activated expression of pERK, pAkt, fibronectin, and Twist1, and lowered expression of E-cadherin, thereby facilitating epithelial-mesenchymal transition, invasion, and metastasis. In vivo investigations established that galectin-4 expression enabled prostate cancer cells to repopulate tumors in orthotopic and heterotopic tissues. Notably, these effects of galectin-4 relied upon O-glycosylation mediated by C1GALT1, a galactosyltransferase implicated in other cancers. Parallel changes in galectin-4 and O-glycosylation triggered aberrant receptor signaling and more aggressive invasive character in prostate cancer cells, which through better survival in the circulation also contributed to the bulk cell progeny of distal tumors. Our findings establish galectin-4 and C1GALT1-mediated glycosylation in a signaling axis that is activated during prostate cancer progression, with implications for therapeutic targeting of advanced metastatic disease. Cancer Res; 76(19); 5756-67. ©2016 AACR.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge