English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Molecular Endocrinology 2006-Aug

Metformin reduces lipolysis in primary rat adipocytes stimulated by tumor necrosis factor-alpha or isoproterenol.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Tingting Ren
Jinhan He
Hongfeng Jiang
Luxia Zu
Shenshen Pu
Xiaohui Guo
Guoheng Xu

Keywords

Abstract

In patients with type 2 non-insulin-dependent diabetes mellitus (NIDDM), the biguanide, metformin, exerts its antihyperglycemic effect by improving insulin sensitivity, which is associated with decreased level of circulating free fatty acids (FFA). The flux of FFA and glycerol from adipose tissue to the blood stream primarily depends on the lipolysis of triacylglycerols in the adipocytes. Adipocyte lipolysis is physiologically stimulated by catecholamine hormones. Tumor necrosis factor-alpha (TNF-alpha), a cytokine largely expressed in adipose tissue, stimulates chronic lipolysis, which may be associated with increased systemic FFA and insulin resistance in obesity and NIDDM. In this study, we examined the role of metformin in inhibiting lipolytic action upon various lipolytic stimulations in primary rat adipocytes. Treatment with metformin attenuated TNF-alpha-mediated lipolysis by suppressing phosphorylation of extracellular signal-related kinase 1/2 and reversing the downregulation of perilipin protein in TNF-alpha-stimulated adipocytes. The acute lipolytic response to adrenergic stimulation of isoproterenol was also restricted by metformin. A high concentration of glucose in the adipocyte culture promoted the basal rate of glycerol release and significantly enhanced the lipolytic action stimulated by either TNF-alpha or isoproterenol. Metformin not only inhibits the basal lipolysis simulated by high glucose, but also suppresses the high glucose-enhanced lipolysis response to TNF-alpha or isoproterenol. The antilipolytic action in adipocytes could be the mechanism by which cellular action by metformin reduces systemic FFA concentration and thus improves insulin sensitivity in obese patients and the hyperglycemic conditions of NIDDM.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge