English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Toxicology 2017-May

Methanolic bark extract of Acacia catechu ameliorates benzo(a)pyrene induced lung toxicity by abrogation of oxidative stress, inflammation, and apoptosis in mice.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Ayaz Shahid
Rashid Ali
Nemat Ali
Syed Kazim Hasan
Preeti Barnwal
Shekh Mohammad Afzal
Abul Vafa
Sarwat Sultana

Keywords

Abstract

Benzo(a)pyrene [B(a)P] is a well-known carcinogen present in the environment. In this study, we evaluated the protective potential of methanolic bark extract of Acacia catechu Willd. (MEBA) against the lung toxicity induced by B(a)P in Swiss albino mice. To determine the protective efficacy of MEBA, it was orally administered to the mice at two doses (200 and 400 mg/kg body weight) once daily for 7 days. Mice were also exposed (orally) to B(a)P at a dose of 125 mg/kg body weight on 7th day. Administration of B(a)P increased the activities of toxicity markers such as LDH, LPO, and XO with a subsequent decrease in the activities of tissue anti-oxidant armory (CAT, SOD, GST, GPx, GR, QR, and GSH). It also caused activation of the apoptotic and inflammatory pathway by upregulation of TNF-α, NF-kB, COX-2, p53, bax, caspase-3, and downregulating Bcl-2. Pretreatment with MEBA at two different doses (200 and 400 mg/kg body weight) significantly ameliorates B(a)P-induced increased toxicity markers and activities of detoxifying enzymes along with the levels of glutathione content. It also significantly attenuated expression of apoptotic and inflammatory markers in the lungs. Histological results further confirmed the protective role of MEBA against B(a)P-induced lung toxicity. The results indicate that MEBA may be beneficial in ameliorating the B(a)P-induced oxidative stress, inflammation, and apoptosis in the lungs of mice. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1566-1577, 2017.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge