English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Toxicology in Vitro 2017-Aug

Methyl 5-[(1H-indol-3-yl)selanyl]-1H-benzoimidazol-2-ylcarbamate (M-24), a novel tubulin inhibitor, causes G2/M arrest and cell apoptosis by disrupting tubulin polymerization in human cervical and breast cancer cells.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Daiying Zuo
Xuewei Jiang
Mengting Han
Jiwei Shen
Binyue Lang
Qi Guan
Zhaoshi Bai
Chunming Han
Zengqiang Li
Weige Zhang

Keywords

Abstract

Methyl 5-[(1H-indol-3-yl)selanyl]-1H-benzoimidazol-2-ylcarbamate (M-24) is a newly synthesized analogue of nocodazole by our group and has been found to be active for some cancer cells. However, its sensitivity to different cell lines and the underlying anticancer mechanism are still unclear. In this study, we proved that M-24 had strong time- and dose-dependent anti-proliferative effects on human cervical cancer HeLa cells and human breast carcinoma MCF-7 cells. We demonstrated that the growth inhibitory effects of M-24 in both cell lines were associated with microtubule depolymerization. Furthermore, M-24 treatment resulted in cell cycle arrest at the G2/M phase in a dose-dependent manner with subsequent apoptosis induction. Western blotting analysis revealed that up-regulation of cyclin B1 and cdc2 was related with G2/M arrest in both cell lines. In addition, M-24-induced HeLa cell apoptosis was mainly associated with mitochondria-dependent intrinsic pathway. However, M-24-induced MCF-7 cell apoptosis was associated with both mitochondrial and death receptor pathway. In conclusion, M-24 caused apoptosis through disrupting microtubule assembly and inducing cell cycle arrest in HeLa and MCF-7 cells. Therefore, the novel compound M-24 is a promising microtubule-destabilizing agent that has great potential for the therapy of various malignancies especially human cervical and breast cancers.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge