English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Drug Design, Development and Therapy 2019

MicroRNA-384-5p/Beclin-1 As Potential Indicators For Epigallocatechin Gallate Against Cardiomyocytes Ischemia Reperfusion Injury By Inhibiting Autophagy Via PI3K/Akt Pathway.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Chan Zhang
Ronggan Liang
Xiaowen Gan
Xiufang Yang
LingLin Chen
Jie Jian

Keywords

Abstract

Epigallocatechin gallate (EGCG) has established protective actions against myocardial ischemia/reperfusion (I/R) injury by regulating autophagy. However, little is known about the mechanisms of EGCG in posttranscriptional regulation in the process of cardioprotection. Here we studied whether microRNAs play a role in EGCG-induced cardioprotection.The myocardial I/R injury in vitro and in vivo model were made, with or without EGCG pretreatment. The upregulation and silencing of microRNA-384-5p (miR-384) and Beclin-1 in H9c2 cell lines were established. Rats were transfected with miR-384 specific shRNA. Dual-luciferase reporter gene assay was conducted to verify the relationship between miR-384 and Beclin-1. TTC staining was performed to analyze the area of myocardial infarct size. Cell viability was monitored by cell counting kit-8 (CCK-8). The release of cardiac troponin-I (cTnI) was examined by ELISA. The levels of autophagy-related genes or proteins expression were evaluated by qRT-PCR or Western blotting. Autophagosomes of myocardial cells were detected by transmission electron microscopy and laser scanning confocal microscope.I/R increased both autophagosomes and autolysosomes, thereby increasing autophagic flux both in vitro and in vivo. Pretreatment with EGCG attenuated I/R-induced autophagic flux expression, accompanied by an increase in cell viability and a decrease in the size of myocardial infarction. MiR-384 expression was down-regulated in H9c2 cell lines when subjected to I/R, while this suppression could be reversed by EGCG pretreatment. The dual-luciferase assay verified that Beclin-1 was a target of miR-384. Both overexpression of miR-384 and knocking down of Beclin-1 significantly inhibited I/R-induced autophagy, accompanied by the activation of PI3K/Akt pathway, thus enhanced the protective effect of EGCG. However, these functions were abrogated by the PI3K inhibitor, LY294002.We confirmed that EGCG has a protective role in microRNA-384-mediated autophagy by targeting Beclin-1 via activating the PI3K/Akt signaling pathway. Our results unveiled a novel role of EGCG in myocardial protection, involving posttranscriptional regulation with miRNA-384.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge