English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 2012-Nov

Microfractionation bioactivity-based ultra performance liquid chromatography/quadrupole time-of-flight mass spectrometry for the identification of nuclear factor-κB inhibitors and β2 adrenergic receptor agonists in an alkaloidal extract of the folk herb Alstonia scholaris.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Yuanyuan Hou
Xuelin Cao
Liqiang Wang
Binfeng Cheng
Linyi Dong
Xiaodong Luo
Gang Bai
Wenyuan Gao

Keywords

Abstract

Traditional Chinese medicines (TCMs) are generally considered complementary or alternative remedies in most Western countries. The constituents of TCMs are hard to define, and their efficacy is difficult to appraise. Thus, the development of suitable methods for evaluating the relationship between bioactivity and the chemical makeup of complex TCM mixtures remains a great challenge. In the present work, the bioactivity-integrated fingerprints of alkaloidal leaf extracts of Alstonia scholaris, a folk medicinal herb for chronic respiratory diseases, were established by ultra performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF). This method was coupled with two dual-luciferase reporter assay systems to show nuclear factor-κB (NF-κB) inhibition and β(2) adrenergic receptor (β(2)AR) activation. Using UPLC-Q/TOF, 18 potential candidates were identified according to unique mass spectrometric fragmentation. After in vitro biological evaluation, several indole alkaloids with anti-inflammatory and anti-asthmatic properties were found, including akuammidine, (E)-alstoscholarine, and (Z)-alstoscholarine. Compared with conventional fingerprints, the microfractionation based bioactivity-integrated fingerprints that contain both chemical and bioactivity details offer a more comprehensive understanding of the chemical makeup of plant materials. This strategy clearly demonstrated that dual bioactivity-integrated fingerprinting is a powerful tool for the improved screening and identification of potential dual-target lead compounds in complex herbal medicines.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge