English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Canadian Journal of Microbiology 1987-Apr

Microincineration and elemental X-ray microanalysis of single Bacillus cereus T spores.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
R Scherrer
V E Shull

Keywords

Abstract

Single whole spores of bacillus cereus T were analyzed by scanning electron microscopy and electron microprobe X-ray microanalysis before and after high-temperature (600 degrees C) ashing in air. High-temperature ashing consisted of a centripetal oxidation of the spore surface combined with pyrolysis of the spore's interior. Ashing of single spores produced a compact central ash particle, mimicking the much larger unashed spore body in outline but containing craterlike microregions, and a peripheral thin ash film. Ashing mostly eliminated the spore's organic matrix; however, ash residues still gave residual carbon-characteristic X-ray counts. Ashing of single spores produced a two-, five-, and six-fold increase of potassium, magnesium, and calcium X-ray intensities, respectively. Iron, although low in actual counts, became detectable after ashing. Phosphorus characteristic X-rays were decreased by 41% after ashing, while volatilization lowered sodium and manganese X-ray intensities by over 80%. High-temperature ashing enhanced element-characteristic X-ray intensities of the non-volatilizable mineral(ized) elements of spores by compacting them into ash residues, more so than by simply abolishing their organic matrix. Microincineration appears a generally useful preconcentration technique for elemental detection and localization in X-ray microanalysis.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge