English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cancer Research 1989-Jun

Modification of the metabolism and cytotoxicity of bioreductive alkylating agents by dicoumarol in aerobic and hypoxic murine tumor cells.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
S R Keyes
S Rockwell
A C Sartorelli

Keywords

Abstract

We have demonstrated previously that dicoumarol (DIC) increased the generation of reactive metabolites from mitomycin C (MC) in EMT6 cells under hypoxic conditions in vitro. This increased reaction rate was associated with an increased toxicity of MC to hypoxic EMT6 cells. In contrast, aerobic cells treated with DIC in vitro were protected from MC toxicity. We now demonstrate that DIC sensitizes EMT6 cells to two MC analogues, porfiromycin (POR) and the 7-N-dimethylaminomethylene analogue of mitomycin C (BMY-25282), in hypoxia and protects cells from these agents in air, despite the fact that POR is preferentially toxic to hypoxic cells and BMY-25282 is preferentially toxic to aerobic cells. In contrast, DIC increases menadione cytotoxicity in both air and hypoxia and has no effect on the cytotoxicity of Adriamycin. We have also shown previously that the preferential toxicity of POR to hypoxic cells is associated with an increased rate of drug uptake. In the present study, DIC had no measurable effect on the uptake of [3H]POR but increased the extent of efflux of this agent. MC-induced DNA cross-links, which have been proposed as the lesions responsible for the lethality of MC, are decreased by DIC in air and increased by DIC in hypoxia, in concert with the observed modifications of MC cytotoxicity by DIC. However, in aerobic cells treated with DIC and MC, the decrease in DNA interstrand cross-links is not directly associated with a decrease in cytotoxicity. L1210 cells, which have no measurable quinone reductase activity, demonstrate increased toxicity when treated with DIC and MC in hypoxia, as observed with EMT6 cells. Unlike EMT6 cells, however, L1210 cells are not protected by DIC from MC toxicity in air. Taken together, these findings suggest that DIC is altering the intracellular metabolism of MC and that quinone reductase or another, unidentified, enzyme sensitive to DIC may be involved in activating MC to a toxic product in aerobic EMT6 cells.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge