English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochimica et Biophysica Acta - General Subjects 1992-Jun

Modulation by protein kinase C of the hormonal responsiveness of hepatocytes from lean (Fa/fa?) and obese (fa/fa) Zucker rats.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
J A García-Sáinz
R Alcántara-Hernández
M Robles-Flores
M E Torres-Márquez
D Massillon
B Annabi
G Van de Werve

Keywords

Abstract

The effect of phorbol myristate acetate (PMA) on the hormonal responsiveness of hepatocytes from lean and obese Zucker rats was studied. Phenylephrine-stimulated phosphatydylinositol labeling and phosphorylase activation were antagonized by PMA in cells from obese and lean animals; bigger residual effects were observed in cells from obese animals even at high PMA concentrations. Cyclic AMP accumulation induced by isoproterenol, glucagon, forskolin and cholera toxin was higher in cells from lean animals than in those from obese rats. PMA diminished glucagon- and cholera toxin-induced cyclic AMP accumulation; cells from lean animals were more sensitive to PMA. Two groups of isoforms of protein kinase C (PKC) were observed in hepatocytes from Zucker rats using DEAE-cellulose column chromatography: PKC 1 and PKC 2. The PKC 1 isozymes were separated into four peaks using hydroxylapatite: aa, 1a (PKC-beta), 1b (PKC-alpha) and 1c. Short treatment with PMA decreased the activity of PKC 1 (peaks 1b (PKC-alpha) and 1c) and to a lesser extent of PKC 2; cells from lean animals were more sensitive to PMA than those obtained from obese rats. Our results indicate that cells from genetically obese Zucker rats are in general less sensitive to this activator of protein kinase C than those from their lean littermates. The possibility that alterations in the phosphorylation/dephosphorylation cycles, that control metabolism and hormonal responsiveness, may contribute to this obese state is suggested.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge