English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Phytochemistry Letters 2018-Dec

Modulation of polyketide biosynthetic pathway of the endophytic fungus, Anteaglonium sp. FL0768, by copper (II) and anacardic acid.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jair Mafezoli
Ya-Ming Xu
Felipe Hilário
Brandon Freidhof
Patricia Espinosa-Artiles
Lourdes Santos
Maria de Oliveira
A Gunatilaka

Keywords

Abstract

In an attempt to explore the biosynthetic potential of endosymbiotic fungi, the secondary metabolite profiles of the endophytic fungus, Anteaglonium sp. FL0768, cultured under a variety of conditions were investigated. In potato dextrose broth (PDB) medium, Anteaglonium sp. FL0768 produced the heptaketides, herbaridine A (1), herbarin (2), 1-hydroxydehydroherbarin (3), scorpinone (4), and the methylated hexaketide 9S,11R-(+)-ascosalitoxin (5). Incorporation of commonly used epigenetic modifiers, 5-azacytidine and suberoylanilide hydroxamic acid, into the PDB culture medium of this fungus had no effect on its secondary metabolite profile. However, the histone acetyl transferase inhibitor, anacardic acid, slightly affected the metabolite profile affording scorpinone (4) as the major metabolite together with 1-hydroxydehydroherbarin (3) and a different methylated hexaketide, ascochitine (6). Intriguingly, incorporaion of Cu2+ into the PDB medium enhanced production of metabolites and drastically affected the biosynthetic pathway resulting in the production of pentaketide dimers, palmarumycin CE4 (7), palmarumycin CP4 (8), and palmarumycin CP1 (9), in addition to ascochitine (6). The structure of the new metabolite 7 was established with the help of spectroscopic data and by MnO2 oxidation to the known pentaketide dimer, palmarumycin CP3 (10). Biosynthetic pathways to some metabolites in Anteaglonium sp. FL0768 are presented and possible effects of AA and Cu2+ on these pathways are discussed.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge