English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Immunopharmacology 2017-Jun

Modulation of regulatory T cells by intranasal allergen immunotherapy in an experimental rat model of airway allergy.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Saibal Moitra
Ankur Datta
Somnath Mondal
Iman Hazra
Sk Md Omar Faruk
Prasanta K Das
Anjan K Basu
Santanu K Tripathi
Swapna Chaudhuri

Keywords

Abstract

Allergic airway diseases such as asthma and allergic rhinitis are increasing in prevalence worldwide. The theory of an altered Th1/Th2 balance in allergic diathesis has recently been termed a "procrustean paradigm" as it failed to explain many preclinical findings. Regulatory T cells (Treg) have now been shown to be critical in T-cell homeostasis and in the maintenance of peripheral tolerance to allergens. Allergen specific immunotherapy (SIT) has been shown to induce regulatory T cells in allergic patients. Among various types of SIT, intranasal immunotherapy had not been studied in detail for the treatment of allergic airway diseases. So, there was a need to study the contribution of regulatory T cells and their mechanistic pathways following intranasal immunotherapy in-vivo. It had been previously shown that intranasal allergen immunotherapy using Alstonia scholaris pollen extract abrogates allergic airway inflammation with decline in IgE and Th2 cytokine levels. The present study for the first time offers a multi-targeted approach towards attenuation of airway allergy by the generation of CD4+CD25+Foxp3+T cells and other subsets of Treg cells like Tr1 cells, Th3 cells, CTLA4+Treg cells, and also modulation of various Treg cell surface molecules like GITR, OX40, CD39 and CD73 by intranasal immunotherapy in the same animal model. This animal experiment will thus help to chart out newer molecular targets for treating allergic asthma or rhinitis.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge