English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
ACS Applied Materials & Interfaces 2018-Aug

Molecular Dynamics Simulations on Nucleic Acid Binding Polymers Designed To Arrest Thrombosis.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Deniz Meneksedag-Erol
Jayachandran N Kizhakkedathu
Tian Tang
Hasan Uludağ

Keywords

Abstract

Cancer-associated thrombosis is managed by the administration of anticoagulants and antithrombotic agents that have a high risk of inducing hemorrhagic complications. To develop safer strategies for antithrombotic therapy, in vivo activators of the intrinsic pathway, namely, cell-free nucleic acids (DNA and RNA) have been targeted with cationic, polyamine-based polymers. The cytotoxicity of the highly cationic polymers is a major drawback for their practical use, and biocompatible alternatives are in high demand. In this study, we carried out all-atom molecular dynamics simulations to systematically examine the DNA binding of polyamine-poly(ethylene glycol) (PEG) diblock polymers designed from biocompatible building blocks to inhibit the procoagulant activity of DNA. The differences in cationic charge, PEG chain length, and initial conformations of the polymers resulted in marked differences in their binding to DNA. We found that having an exposed cationic polyamine group is essential to polymer-DNA binding and a certain level of electrostatic interactions is necessary to maintain the bound state. Intrachain associations between the polyamine groups and PEG chains in some cases have led to a collapsed state of the polymer that precludes binding to DNA. This self-association is mainly due to a strong hydrogen bond between polymer polyamine and PEG groups and partly due to a partially charged semibranched polyamine group architecture. As polymer "masking" of DNA is thought to arrest DNA's prothrombotic activity, our findings highlight the desired structural features of the polymers for stronger DNA binding and provide insights into the design of novel antithrombotic agents.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge