English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Diabetes 2004-Jun

Molecular alterations underlie nodal and paranodal degeneration in type 1 diabetic neuropathy and are prevented by C-peptide.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Anders A F Sima
Weixian Zhang
Zhen-Guo Li
Yuichi Murakawa
Christopher R Pierson

Keywords

Abstract

To explore the molecular abnormalities underlying the degeneration of the node of Ranvier, a characteristic aberration of type 1 diabetic neuropathy, we examined in type 1 BB/Wor and type 2 BBZDR/Wor rats changes in expression of key molecules that make up the nodal and paranodal apparatus of peripheral nerve. Their posttranslational modifications were examined in vitro. Their responsiveness to restored insulin action was examined in type 1 animals replenished with proinsulin C-peptide. In sciatic nerve, the expression of contactin, receptor protein tyrosine phosphatase beta, and the Na(+)-channel beta(1) subunit, paranodal caspr and nodal ankyrin(G) was unaltered in 2-month type 1 diabetic BB/Wor rats but significantly decreased after 8 months of diabetes. These abnormalities were prevented by C-peptide administered to type 1 BB/Wor rats and did not occur in duration- and hyperglycemia-matched type 2 BBZDR/Wor rats. The expression of the alpha-Na(+)-channel subunit was unaltered. In SH-SY5Y cells, only the combination of insulin and C-peptide normalized posttranslational O-linked N-acetylglucosamine modifications and maximized serine phosphorylation of ankyrin(G) and p85 binding to caspr. The beneficial effects of C-peptide resulted in significant normalization of the nerve conduction deficits. These data describe for the first time the progressive molecular aberrations underlying nodal and paranodal degenerative changes in type 1 diabetic neuropathy and demonstrate that they are preventable by insulinomimetic C-peptide.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge