English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Phytochemistry 2005-Jun

Molecular and biochemical characterisation of a serine acetyltransferase of onion, Allium cepa (L.).

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Michael T McManus
Susanna Leung
Anya Lambert
Richard W Scott
Meeghan Pither-Joyce
Balance Chen
John McCallum

Keywords

Abstract

We have previously cloned a cDNA, designated SAT1, corresponding to a gene coding for a serine acetyltransferase (SAT) from onion (Allium cepa L.). The SAT1 locus was mapped to chromosome 7 of onion using a single-stranded conformation polymorphism (SSCP) in the 3' UTR of the gene. Northern analysis has demonstrated that expression of the SAT1 gene is induced in leaf tissue in response to low S-supply. Phylogenetic analysis has placed SAT1 in a strongly supported group (100% bootstrap) that comprises sequences that have been characterised biochemically, including Allium tuberosum, Spinacea oleracea, Glycine max, Citrullus vulgaris, and SAT5 (AT5g56760) of Arabidopsis thaliana. This group can be divided further with the SAT1 of A. cepa sequence grouping strongly with the A. tuberosum sequence. Translation of SAT1 from onion generates a protein of 289 amino acids with a calculated molecular mass of 30,573 Da and pI of 6.52. The conserved G277 and H282 residues that have been identified as critical for L-cysteine inhibition are observed at G272 and H277. SAT1 has been cloned into the pGEX plasmid, expressed in E. coli and SAT activity of the recombinant enzyme has been measured as acetyl-CoA hydrolysis detected at 232 nm. A Km of 0.72 mM was determined for l-serine as substrate, a Km of 92 microM was calculated with acetyl-CoA as substrate, and an inhibition curve for L-cysteine generated an IC50 value of 3.1 microM. Antibodies raised against the recombinant SAT1 protein recognised a protein of ca. 33 kDa in whole leaf onion extracts. These properties of the SAT1 enzyme from onion are compared with other SAT enzymes characterised from closely related species.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge