English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BMC Plant Biology 2019-Nov

Molecular cloning and metabolomic characterization of the 5-enolpyruvylshikimate-3-phosphate synthase gene from Baphicacanthus cusia.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jian Yu
Yihan Zhang
Shuju Ning
Qi Ye
Hexin Tan
Ruibing Chen
Qitao Bu
Rui Zhang
Peimin Gong
Xiaoli

Keywords

Abstract

Indigo alkaloids, such as indigo, indirubin and its derivatives, have been identified as effective antiviral compounds in Baphicacanthus cusia. Evidence suggests that the biosynthesis of indigo alkaloids in plants occurs via the shikimate pathway. The enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is involved in plant metabolism; however, its underlying putative mechanism of regulating the production of indigo alkaloids is currently unknown.One gene encoding EPSPS was isolated from B. cusia. Quantitative real-time PCR analysis revealed that BcEPSPS was expressed at the highest level in the stem and upregulated by methyl jasmonate (MeJA), salicylic acid (SA) and abscisic acid (ABA) treatment. The results of subcellular localization indicated that BcEPSPS is mainly expressed in both the plastids and cytosol, which has not been previously reported. An enzyme assay revealed that the heterogeneously expressed BcEPSPS protein catalysed the generation of 5-enolpyruvyl shikimate-3-phosphate. The overexpression of BcEPSPS in Isatis indigotica hairy roots resulted in the high accumulation of indigo alkaloids, such as indigo, secologanin, indole and isorhamnetin.The function of BcEPSPS in catalysing the production of EPSP and regulating indigo alkaloid biosynthesis was revealed, which provided a distinct view of plant metabolic engineering. Our findings have practical implications for understanding the effect of BcEPSPS on active compound biosynthesis in B. cusia.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge