English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Genetics 2015-Jun

Molecular cloning, characterization and expression analysis of the gene encoding 1-deoxy-D-xylulose 5-phosphate reductoisomerase from Aquilaria sinensis (Lour.) Gilg.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Juan Liu
Yanhong Xu
Liang Liang
Jianhe Wei

Keywords

Abstract

The major constituents of agarwood oils are sesquiterpenes that are obtained from isoprenoid precursors through the plastidial methylerythritol phosphate (MEP) pathway and the cytosolic mevalonate pathway. In this study, a novel full-length cDNA of 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR), which was the second key enzyme in the plastid MEP pathway of sesquiterpenes biosynthesis was isolated from the stem of Aquilaria sinensis (Lour.) Gilg by the methods of reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) technique for the first time, and named as AsDXR. The full-length cDNA of AsDXR was 1768 bp, containing a 1437 bp open reading frame (ORF) encoding a polypeptide of 478 amino acids with a molecular weight of 51.859 kD and the theoretical isoelectric point of 6.29. Comparative and bioinformatic analysis of the deduced AsDXR protein showed extensive homology with DXRs from other plant species, especially Theobroma cacao and Gossypium barbadense, and contained a conserved transit peptide for plastids, and extended pro-rich region and a highly conserved NADPH-binding motif owned by all plant DXRs. Southern blot analysis indicated that AsDXR belonged to a small gene family. Tissue expression pattern analysis revealed that AsDXR expressed strongly in root and stem, but weakly in leaf. Additionally, AsDXR expression was found to be activated by exogenous elicitor of MeJA (methyl jasmonate). The contents of three sesquiterpenes (α-guaiene, α-humulene and Δ-guaiene) were significantly induced by MeJA. This study enables us to further elucidate the role of AsDXR in the biosynthesis of agarwood sesquiterpenes in A. sinensis at the molecular level.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge