English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European journal of biochemistry 2002-Nov

Molecular cloning of columbamine O-methyltransferase from cultured Coptis japonica cells.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Takashi Morishige
Emilyn Dubouzet
Kum-Boo Choi
Kazufumi Yazaki
Fumihiko Sato

Keywords

Abstract

To identify all of the O-methyltransferase genes involved in isoquinoline alkaloid biosynthesis in Coptis japonica cells, we sequenced 1014 cDNA clones isolated from high-alkaloid-producing cultured cells of C. japonica. Among them, we found all three reported O-methyltransferases and an O-methyltransferase-like cDNA clone (CJEST64). This cDNA was quite similar to S-adenosyl-l-methionine:coclaurine 6-O-methyltransferase and S-adenosyl-l-methionine:isoflavone 7-O-methyltransferase. As S-adenosyl-l-methionine:columbamine O-methyltransferase, which catalyzes the conversion of columbamine to palmatine, is one of the remaining unelucidated components in isoquinoline alkaloid biosynthesis in C. japonica, we heterologously expressed the protein in Escherichia coli and examined the activity of columbamine O-methyltransferase. The recombinant protein clearly showed O-methylation activity using columbamine, as well as (S)-tetrahydrocolumbamine, (S)-, (R,S)-scoulerine and (R,S)-2,3,9,10-tetrahydroxyprotoberberine as substrates. This result clearly indicated that EST analysis was useful for isolating the candidate gene in a relatively well-characterized biosynthetic pathway. The relationship between the structure and substrate recognition of the O-methyltransferases involved in isoquinoline alkaloid biosynthesis, and a reconsideration of the biosynthetic pathway to palmatine are discussed.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge