English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Clinical and Experimental Allergy 2000-Dec

Molecular cloning of major allergen from Cupressus arizonica pollen: Cup a 1.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
E Aceituno
V Del Pozo
A Mínguez
I Arrieta
I Cortegano
B Cárdaba
S Gallardo
M Rojo
P Palomino
C Lahoz

Keywords

Abstract

The family Cupressaceae is a relevant source of allergens that causes winter respiratory allergies. Cloning and sequencing the major antigen of Cupressus arizonica is important for a better diagnosis and treatment of sensitized patients. To obtain a full-length complementary DNA for Cup a 1, the major allergen of Cupressus arizonica pollen. It was cloned and sequenced and the recombinant protein was expressed. Messenger RNA from Cupressus arizonica pollen was obtained and the Cup a 1 sequence was established using a 3'-RACE system and primers based on the N-terminal amino acid sequence. Recombinant Cup a 1 was cloned in pBluescript and expressed in a glycosylated form in rabbit reticulocytes. The cDNA was subcloned in pGEX-5X-1 and expressed in Escherichia coli as a fusion protein with GST. Recombinant Cup a 1 is highly homologous with the major allergens of mountain cedar (Jun a 1), Japanese cypress (Cha o 1) and Japanese cedar (Cry j 1). Cup a 1 contains three potential N-glycosylation sites that are different from those found in Jun a 1 and Cry j 1. The cloned protein contains a pectate lyase active site identical to those of Cry j 1 and Jun a 1. The IgE from patients' sera recognizes recombinant Cup a 1, and this reactivity is higher with the glycosylated protein. Cup a 1 has been cloned and sequenced. As expected, the high degree of homology with Cha o 1, Jun a 1 and Cry j 1 explains the cross-reactivity of conifer pollens. Different IgE reactivity with the glycosylated and non-glycosylated protein suggests the importance of carbohydrate moieties in the IgE binding site.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge