English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Proteins: Structure, Function and Genetics 1995-Jan

Molecular dynamics simulations of alcohol dehydrogenase with a four- or five-coordinate catalytic zinc ion.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
U Ryde

Keywords

Abstract

A detailed parameterization is presented of a zinc ion with one histidine and two cysteinate ligands, together with one or two water, hydroxide, aldehyde, alcohol, or alkoxide ligands. The parameterization is tailored for the active site of alcohol dehydrogenase and is obtained entirely from quantum chemical computations. The force-field reproduces excellently the geometry of quantum chemically optimized zinc complexes as well as the crystallographic geometry of the active site of alcohol dehydrogenase and small organic structures. The parameterization is used in molecular dynamics simulations and molecular mechanical energy minimizations of alcohol dehydrogenase with a four- or five-coordinate catalytic zinc ion. The active-site zinc ion seems to prefer four-coordination over five-coordination by at least 36 kJ/mol. The only stable binding site of a fifth ligand at the active-site zinc ion is opposite to the normal substrate site, in a narrow cavity behind the zinc ion. Only molecules of the size of water or smaller may occupy this site. There are large fluctuations in the geometry of the zinc coordination sphere. A four-coordinate water molecule alternates frequently (every 7 ps) between the substrate site and the fifth binding site and even two five-coordinate water molecules may interchange ligation sites without prior dissociation. Ligand exchange at the zinc ion probably proceeds by a dissociative mechanism.(ABSTRACT TRUNCATED AT 250 WORDS)

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge