English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 2001-Mar

Molecular evolution of receptor-like kinase genes in hexaploid wheat. Independent evolution of orthologs after polyploidization and mechanisms of local rearrangements at paralogous loci.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
C Feuillet
A Penger
K Gellner
A Mast
B Keller

Keywords

Abstract

Hexaploid wheat is a young polyploid species and represents a good model to study mechanisms of gene evolution after polyploidization. Recent studies at the scale of the whole genome have suggested rapid genomic changes after polyploidization but so far the rearrangements that have occurred in terms of gene content and organization have not been analyzed at the microlevel in wheat. Here, we have isolated members of a receptor kinase (Lrk) gene family in hexaploid and diploid wheat, Aegilops tauschii, and barley (Hordeum vulgare). Phylogenetic analysis has allowed us to establish evolutionary relationships (orthology versus paralogy) between the different members of this gene family in wheat as well as with Lrk genes from barley. It also demonstrated that the sequences of the homoeologous Lrk genes evolved independently after polyploidization. In addition, we found evidence for gene loss during the evolution of wheat and barley. Analysis of large genomic fragments isolated from nonorthologous Lrk loci showed a high conservation of the gene content and gene organization at these loci on the homoeologous group 1 chromosomes of wheat and barley. Finally, sequence comparison of two paralogous fragments of chromosome 1B showed a large number of local events (sequence duplications, deletions, and insertions), which reveal rearrangements and mechanisms for genome enlargement at the microlevel.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge