English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemical Journal 2008-Mar

Molecular identification of three Arabidopsis thaliana mitochondrial dicarboxylate carrier isoforms: organ distribution, bacterial expression, reconstitution into liposomes and functional characterization.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Luigi Palmieri
Nathalie Picault
Roberto Arrigoni
Evelyne Besin
Ferdinando Palmieri
Michael Hodges

Keywords

Abstract

Screening of the Arabidopsis thaliana genome revealed three potential homologues of mammalian and yeast mitochondrial DICs (dicarboxylate carriers) designated as DIC1, DIC2 and DIC3, each belonging to the mitochondrial carrier protein family. DIC1 and DIC2 are broadly expressed at comparable levels in all the tissues investigated. DIC1-DIC3 have been reported previously as uncoupling proteins, but direct transport assays with recombinant and reconstituted DIC proteins clearly demonstrate that their substrate specificity is unique to plants, showing the combined characteristics of the DIC and oxaloacetate carrier in yeast. Indeed, the Arabidopsis DICs transported a wide range of dicarboxylic acids including malate, oxaloacetate and succinate as well as phosphate, sulfate and thiosulfate at high rates, whereas 2-oxoglutarate was revealed to be a very poor substrate. The role of these plant mitochondrial DICs is discussed with respect to other known mitochondrial carrier family members including uncoupling proteins. It is proposed that plant DICs constitute the membrane component of several metabolic processes including the malate-oxaloacetate shuttle, the most important redox connection between the mitochondria and the cytosol.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge