English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cancer Biology and Therapy

Mu-calpain activation in beta-lapachone-mediated apoptosis.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Colleen Tagliarino
John J Pink
Kathryn E Reinicke
Sara M Simmers
Shelly M Wuerzberger-Davis
David A Boothman

Keywords

Abstract

Beta-lapachone (beta-Lap) triggers apoptosis in a number of human breast and prostate cancer cell lines through a unique apoptotic pathway that is dependent upon NQO1, a two-electron reductase. Recently, our laboratory showed that beta-lap-exposed MCF-7 cells exhibited an early increase in intracellular cytosolic Ca(2+) from endoplasmic reticulum stores, and that BAPTA-AM (an intracellular Ca(2+) chelator) blocked these early increases and partially inhibited all aspects of beta-lap-induced apoptosis. We now show that exposure of NQO1-expressing breast cancer cells to beta-lap stimulates a unique proteolytic apoptotic pathway involving mu-calpain activation. No apparent activation of m-calpain was noted. Upon activation, mu-calpain translocated to the nucleus concomitant with specific nuclear proteolytic events. Apoptotic responses in beta-lap-exposed NQO1-expressing cells were significantly delayed and survival enhanced by exogenous over-expression of calpastatin, a natural inhibitor of mu- and m-calpains. Furthermore, purified mu-calpain cleaved PARP to a unique fragment (approximately 60 kDa), not previously reported for calpains. We provide evidence that beta-lap-induced, mu-calpain-stimulated apoptosis does not involve any known apoptotic caspases; the activated fragments of caspases were not observed after beta-lap exposures, nor were there any changes in the pro-enzyme forms as measured by Western blot analyses. The ability of beta-lap to trigger an apparently novel, p53-independent, calpain-mediated apoptotic cell death further support the development of this drug for improved breast cancer therapy.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge