English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Current Issues in Molecular Biology 2009

Multigeneic QTL: the laccase encoded within the soybean Rfs2/rhg1 locus inferred to underlie part of the dual resistance to cyst nematode and sudden death syndrome.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
M J Iqbal
R Ahsan
A J Afzal
A Jamai
K Meksem
H A El-Shemy
D A Lightfoot

Keywords

Abstract

Multigeneic QTL present significant problems to analysis. Resistance to soybean (Glycine max (L) Merr.) sudden death syndrome (SDS) caused by Fusarium virguliforme was partly underlain by QRfs2 that was clustered with, or pleiotropic to, the multigeneic rhg1 locus providing resistance to soybean cyst nematode (SCN; Heterodera glycines). A group of five genes were found between the two markers that delimited the Rfs2/rhg1 locus. One of the five genes was predicted to encode an unusual diphenol oxidase (laccase; EC 1.10.3.2). The aim of this study was to characterize this member of the soybean laccase gene-family and explore its involvement in SDS resistance. A genomic clone and a full length cDNA was isolated from resistant cultivar 'Forrest' that were different among susceptible cultivars 'Asgrow 3244' and 'Williams 82' at four residues R/H168, I/M271, R/H330, E/K470. Additional differences were found in six of the seven introns and the promoter region. Transcript abundance (TA) among genotypes that varied for resistance to SDS or SCN did not differ significantly. Therefore the protein activity was inferred to underlie resistance. Protein expressed in yeast pYES2/NTB had weak enzyme activity with common substrates but good activity with root phenolics. The Forrest isoform may underlie both QRfs2 and rhg1.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge