English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
PLoS ONE 2013

Mutation of the light-induced yellow leaf 1 gene, which encodes a geranylgeranyl reductase, affects chlorophyll biosynthesis and light sensitivity in rice.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Yong Zhou
Zhiyun Gong
Zefeng Yang
Yuan Yuan
Jinyan Zhu
Man Wang
Fuhai Yuan
Shujun Wu
Zhiqin Wang
Chuandeng Yi

Keywords

Abstract

Chlorophylls (Chls) are crucial for capturing light energy for photosynthesis. Although several genes responsible for Chl biosynthesis were characterized in rice (Oryza sativa), the genetic properties of the hydrogenating enzyme involved in the final step of Chl synthesis remain unknown. In this study, we characterized a rice light-induced yellow leaf 1-1 (lyl1-1) mutant that is hypersensitive to high-light and defective in the Chl synthesis. Light-shading experiment suggested that the yellowing of lyl1-1 is light-induced. Map-based cloning of LYL1 revealed that it encodes a geranylgeranyl reductase. The mutation of LYL1 led to the majority of Chl molecules are conjugated with an unsaturated geranylgeraniol side chain. LYL1 is the firstly defined gene involved in the reduction step from Chl-geranylgeranylated (Chl(GG)) and geranylgeranyl pyrophosphate (GGPP) to Chl-phytol (Chl(Phy)) and phytyl pyrophosphate (PPP) in rice. LYL1 can be induced by light and suppressed by darkness which is consistent with its potential biological functions. Additionally, the lyl1-1 mutant suffered from severe photooxidative damage and displayed a drastic reduction in the levels of α-tocopherol and photosynthetic proteins. We concluded that LYL1 also plays an important role in response to high-light in rice.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge