English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
The Journal of dermatology 2015-Jan

Mycostatic effect of recombinant dermcidin against Trichophyton rubrum and reduced dermcidin expression in the sweat of tinea pedis patients.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Satoru Arai
Takashi Yoshino
Takao Fujimura
Sachie Maruyama
Toshiaki Nakano
Akira Mukuno
Naoya Sato
Kensei Katsuoka

Keywords

Abstract

Trichophytosis, a common dermatophytosis, affects nearly 20-25% of the world's population. However, little is known about mechanisms for preventing colonization of Trichophyton on the skin. Dermcidin, an antimicrobial peptide that provides innate immunity to the skin and is constitutively secreted even in the absence of inflammatory stimulation, was studied to elucidate its antimycotic activity against Trichophyton. Recombinant dermcidin was determined to have antimycotic activity against Trichophyton rubrum, as evaluated by colony-forming unit (CFU) assays. The killing rate of dermcidin was 40.5% and 93.4% at 50 μg/mL (the average dermcidin concentration in healthy subjects) and 270 μg/mL, respectively. An effect of dermcidin treatment was found to be a reduction of the metabolic activity of Trichophyton as determined by nicotinamide adenine dinucleotide assay. Further, dermcidin concentrations in sweat of tinea pedis patients were found to be lower than those of healthy subjects. These findings suggest a mycostatic role for dermcidin, at normal sweat concentrations. Accordingly, we suspect that dermcidin, at normal sweat concentrations, inhibits growth of Trichophyton, where Trichophyton is subsequently eliminated in conjunction with epidermis turnover. Dermcidin, therefore, appears to play a role in the skin protection mechanism that prevents colonization of tinea pedis.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge