English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cellular Signalling 2014-May

NF-κB enhances hypoxia-driven T-cell immunosuppression via upregulation of adenosine A(2A) receptors.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Laurie Bruzzese
Julien Fromonot
Youlet By
Josée-Martine Durand-Gorde
Jocelyne Condo
Nathalie Kipson
Régis Guieu
Emmanuel Fenouillet
Jean Ruf

Keywords

Abstract

Hypoxia affects inflammation by modulating T-cell activation via the adenosinergic system. We supposed that, in turn, inflammation influences cell hypoxic behavior and that stimulation of T-cells in inflammatory conditions involves the concerted action of the nuclear factor κB (NF-κB) and the related hypoxia-inducible factor 1α (HIF-1α) on the adenosinergic system. We addressed this hypothesis by monitoring both transcription factors and four adenosinergic signaling parameters - namely adenosine, adenosine deaminase (ADA), adenosine A2A receptor (A2AR) and cAMP - in T-cells stimulated using phorbol myristate acetate and phytohemagglutinin and submitted to hypoxic conditions which were mimicked using CoCl2 treatment. We found that cell viability was more altered in stimulated than in resting cells under hypoxia. Detailed analysis showed that: i) NF-κB activation remained at basal level in resting hypoxic cells but greatly increased following stimulation, stimulated hypoxic cells exhibiting the higher level; ii) HIF-1α production induced by hypoxia was boosted via NF-κB activation in stimulated cells whereas hypoxia increased HIF-1α production in resting cells without further activating NF-κB; iii) A2AR expression and cAMP production increased in stimulated hypoxic cells whereas adenosine level remained unchanged due to ADA regulation; and iv) the presence of H2S, an endogenous signaling molecule in inflammation, reversed the effect of stimulation on cell viability by down-regulating the activity of transcription factors and adenosinergic immunosuppression. We also found that: i) the specific A2AR agonist CGS-21680 increased the suppressive effect of hypoxia on stimulated T-cells, the antagonist ZM-241385 exhibiting the opposite effect; and ii) Rolipram, a selective inhibitor of cAMP-specific phosphodiesterase 4, and 8-Br-cAMP, a cAMP analog which preferentially activates cAMP-dependent protein kinase A (PKA), increased T-cell immunosuppression whereas H-89, a potent and selective inhibitor of cAMP-dependent PKA, restored cell viability. Together, these data indicate that inflammation enhances T-cell sensitivity to hypoxia via NF-κB activation. This process upregulates A2AR expression and enhances cAMP production and PKA activation, resulting in adenosinergic T-cell immunosuppression that can be modulated via H2S.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge