English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Physiology and Molecular Biology of Plants 2017-Apr

NMR-based metabolomic analysis of wild, greenhouse, and in vitro regenerated shoots of Cymbopogon schoenanthus subsp. proximus with GC-MS assessment of proximadiol.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Asmaa Abdelsalam
Ehab Mahran
Kamal Chowdhury
Arezue Boroujerdi
Ahmed El-Bakry

Keywords

Abstract

Cymbopogon schoenanthus subsp. proximus is a wild plant distributed in subtropical and east Africa extending from the north to the southern parts of Egypt. Widely used in folk medicine, it is the source of the diuretic sesquiterpene proximadiol. Nuclear magnetic resonance metabolomic analysis of polar extracts of shoots from wild, greenhouse, somatic embryos, and direct and indirect organogenic in vitro cultures was carried out. Metabolic profiling yielded 39 compounds, of which common metabolites were 15 (38.4%). Unique metabolites were trehalose (2.5%) in the wild plants, 2-hydroxylisobutyrate, galactarate and tyrosine (7.6%) in indirect organogenic shoots. Tartrate was found only in direct regenerated shoots (2.5%). Metabolites identified in greenhouse and embryogenic shoots showed no unique compounds. Multivariate analysis revealed significant differences between all tested shoots. 4-aminobutyrate, alanine, glutamine, glucose, fructose, and sucrose were the most significantly different metabolites. Proximadiol was identified and quantitatively measured from the non-polar extract of different types of shoots using gas chromatography and mass spectrometry (GC-MS). Concentrations ranged from 3.6 ± 0.03 to 198.6 ± 7.2 µg/100 mg dry weight in regenerated shoots from somatic embryogenesis and in wild plant shoots, respectively. Direct organogenesis yielded the highest in vitro concentration (20.3 ± 0.5 µg/100 mg dry weight). This study reported the metabolic profiling of C. schoenanthus polar extract and identified primary metabolites that are unique to the wild type and shoots regenerated from different in vitro cultures. Proximadiol was quantified and the in vitro culture system yielding the highest concentration relative to the wild plant was identified.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge