English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neurotrauma 2010-Oct

N-acetylcysteine improves hemodynamics and reduces oxidative stress in the brains of newborn piglets with hypoxia-reoxygenation injury.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jiang-Qin Liu
Tze-Fun Lee
Chao Chen
David L Bagim
Po-Yin Cheung

Keywords

Abstract

Reactive oxygen species have been implicated in the pathogenesis of hypoxic-ischemic injury. It has been shown previously that treating an animal with N-acetyl-L-cysteine (NAC), a scavenger of free radicals, significantly minimizes hypoxic-ischemic-induced brain injury in various acute models. Using a subacute swine model of neonatal hypoxia-reoxygenation (H-R), we evaluated the long-term beneficial effect of NAC against oxidative stress-induced brain injury. Newborn piglets were randomly assigned to a sham-operated group (without H-R, n = 6), and two H-R experimental groups (n = 8 each), with 2 h normocapnic alveolar hypoxia and 1 h of 100% oxygen reoxygenation followed by 21% oxygen for 47 h. Five minutes after reoxygenation, the H-R piglets received either normal saline (H-R controls) or NAC (150 mg/kg bolus and 20 mg/kg/h IV for 24 h) in a blinded randomized fashion. Treating the piglets with NAC significantly increased both common carotid arterial flow (CCAF) and oxygen delivery during the early phase of rexoygenation, while both CCAF and carotid oxygen delivery of the H-R group remained lower than the sham-operated groups throughout the experimental period. Compared with H-R controls, significantly higher amounts of anesthetic and sedative medications were required to maintain the NAC-treated piglets in stable condition throughout the experimental period, indicating a stronger recovery. Post-resuscitation NAC treatment also significantly attenuated the increase in cortical caspase-3 and lipid hydroperoxide concentrations. Our findings suggest that post-resuscitation administration of NAC reduces cerebral oxidative stress with improved cerebral oxygen delivery, and probably attenuates apoptosis in newborn piglets with H-R insults.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge