English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Small 2007-Jun

Nanometer-sized molybdenum-iron oxide capsule-surface modifications: external and internal.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Achim Müller
Hartmut Bögge
Filipa L Sousa
Marc Schmidtmann
Dirk G Kurth
Dirk Volkmer
Joris van Slageren
Martin Dressel
Melissa L Kistler
Tianbo Liu

Keywords

Abstract

The cluster {(Mo)Mo5}12Fe(III)30 1 a present in compound 1 (cluster diameter approximately 2.3 nm), which belongs to the family of nanoscale spherical porous {(Mo)Mo5}12{Linker}30 capsules that allow a new type of nanochemistry inside their cavities as well as unprecedented aggregation processes under gaseous, solution, and solid-state conditions, is the starting material for the present investigation. In solution it reacts with LnCl3 x nH2O (Ln = Ce, Pr) thereby replacing six Fe(III) ions with Ln(III) ions to form compounds 2 (Ce) and 3 (Pr). During metal-cation exchange, some of the pentagonal {(Mo)Mo5O21(H2O)6}6- units, which are connected to the Fe(III) centers in 1 a, decompose, thus leading to a temporary capsule opening and uptake of the formed smaller molybdate units into the capsule cavities. In 2 and 3, the pentagonal units are connected via 24 Fe(III) and six Ln(III)-type linkers/spacers representing together the capsule skeletons, which are structurally well-defined in contrast to the capsule contents. The new capsules self-associate into single-layer blackberry-type structures, thus extending the variety of these types of assemblies; the assembly process, that is, the size of the final species, can be controlled by the pH, which allows the generation of differently sized nanoparticles. Magnetic properties of the two new nanomaterials 2 and 3 are also determined.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge