English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Free Radical Research 2015-Apr

Naringin inhibits gamma radiation-induced oxidative DNA damage and inflammation, by modulating p53 and NF-κB signaling pathways in murine splenocytes.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
K Manna
U Das
D Das
S B Kesh
A Khan
A Chakraborty
S Dey

Keywords

Abstract

The adverse effects of ionizing radiation occur due to the generation of reactive oxygen species (ROS). The aim of this study was to identify the protective effects of naringin (NG), a citrus flavonoid, on ionizing radiation (IR)-induced differential stress response, with an exploration of the mechanisms involved in this process. Isolated murine splenocytes were incubated in the presence and in the absence of different concentrations of NG (50 and 100 μM) for 1 h prior to 6 Gy γ-irradiation, and the molecular mechanisms of action were determined through biochemical, immunoblot, flow cytometric, and immunofluorescence studies. Pretreatment with NG significantly prevented IR-induced intracellular ROS generation, thereby preventing the formation of cellular TBARS and the development of cellular nitrite. NG significantly reduced nuclear DNA damage with respect to the irradiated splenocytes, through the inhibition of DNA-PKcs and p-γH2AX. The reduced cell viability as a result of irradiation was recovered by NG through modulation of the redox-regulated cell signaling system. NG pretreatment resulted in significant inhibition of IR-induced G1/S phase cell cycle arrest through the modulation of p53-dependent p21/WAF1, cyclin E, and CDK2 activation. The results also demonstrated that NG blocked the IR-induced p38 function and reversed IR-mediated differential stress response through inhibition of the NF-κB pathway. Thus, the p38/NF-κB pathway participated in the IR-induced inflammatory development, leading to upregulation of CRP, MCP-1, and iNOS2 gene expression. However, NG pretreatment reversed the inflammatory development through downregulation of NF-κB, and regulated the expression of CRP, MCP-1, and iNOS2. The above results provide a theoretical basis for the preventive use of NG against radiation-induced multiple cellular anomalies.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge