English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Physiological Reports 2016-Dec

Nasal TRPA1 mediates irritant-induced bradypnea in mice.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Keiichi Inui
ChangPing Chen
Jordan L Pauli
Chiharu Kuroki
Shogo Tashiro
Yuichi Kanmura
Hideki Kashiwadani
Tomoyuki Kuwaki

Keywords

Abstract

Transient receptor potential ankyrin 1 (TRPA1), a member of the TRP superfamily, exists in sensory neurons such as trigeminal neurons innervating the nasal cavity and vagal neurons innervating the trachea and the lung. Although TRPA1 has been proposed as an irritant receptor that, when stimulated, triggers bradypnea, precise locations of the receptors responsible have not been elucidated. Here, we examined the relative importance of TRPA1 located in the upper airway (nasal) and the lower airway (trachea/lungs) in urethane-anesthetized mice. To stimulate the upper and lower airways separately, two cannulas were inserted through a hole made in the trachea just caudal to the thyroid cartilage, one into the nasal cavity and the second into the lower trachea. A vapor of one of the TRPA1-agonists, allyl isothiocyanate (AITC), was introduced by placing a piece of cotton paper soaked with AITC solution into the airline. AITC decreased the respiratory frequency when applied to the upper airway (ca -30%) but not to the lower airway (ca -5%). No response was observed in TRPA1 knockout mice. Contribution of the olfactory nerve seemed minimal because olfactory bulbectomized wild-type mice showed a similar response to that of the intact mice. AITC-induced bradypnea seemed to be mediated, at least in part, by the trigeminal nerve because trigeminal ganglion neurons were activated by AITC as revealed by an increase in the phosphorylated form of extracellular signal-regulated kinase in the neurons. These data clearly show that trigeminal TRPA1 in the nasal cavity play an essential role in irritant-induced bradypnea.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge