English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biological Chemistry 2009-Aug

Natural phosphoryl and acyl variants of lipid A from Neisseria meningitidis strain 89I differentially induce tumor necrosis factor-alpha in human monocytes.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Constance M John
Mingfeng Liu
Gary A Jarvis

Keywords

Abstract

The native lipooligosaccharide (LOS) from Neisseria meningitidis strain 89I was analyzed by matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) mass spectrometry and the spectrum compared with that of the LOS after O-deacylation and hydrogen fluoride treatment. The data are consistent with the presence of natural variations in the LOS, which include a triphosphorylated lipid A (LA) with and without a phosphoethanolamine group, and both hexa- and pentaacylated LA molecules. Thin-layer chromatography was performed on 89I LA produced by hydrolysis of the LOS, and the purified LA molecules were analyzed by MALDI-TOF and tested for their relative ability to induce the secretion of tumor necrosis factor-alpha by human monocytic THP-1 cells and primary human monocytes. The potency of tumor necrosis factor-alpha induction varied by approximately 2-10-fold, depending on the state of acylation and phosphorylation. The results highlight the significance of phosphorylation along with acylation of the LA component of LOS in stimulation of inflammatory signaling, and suggest that natural strain variation in these moieties may be a feature of meningococcal bacteria, which is of critical importance to the progression of the infection.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge