English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1997-Jun

Negative regulation in the expression of a sugar-inducible gene in Arabidopsis thaliana. A recessive mutation causing enhanced expression of a gene for beta-amylase.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
S Mita
H Hirano
K Nakamura

Keywords

Abstract

Expression of a beta-amylase gene of Arabidopsis thaliana (AT beta-Amy) is regulated by sugars. We identified a mutant, hba1, in which the level of expression of AT beta-Amy in leaves of plants that had been grown in a medium with 2% sucrose was significantly higher than that in wild-type plants. Higher that wild-type levels of beta-amylase in hba1 plants depended on the presence of 1 to 2% sucrose or 1% glucose in the medium, whereas leaves of mutant plants grown with higher levels of sugars had beta-amylase activities similar to those in leaves of wild-type plants. The hba1 phenotype was recessive and did not affect levels of sugars and starch in leaves. It is proposed that expression of AT beta-Amy is regulated by a combination of both positive and negative factors, dependent on the level of sugars, and that HBA1 might function to maintain low-level expression of AT beta-Amy until the level of sugars reaches some high level. Results of crosses of hba1 plants with transgenic plants that harbored an AT beta-Amy:GUS transgene with 1587 bp of the 5'-upstream region suggested that HBA1 affects expressions of AT beta-Amy in trans. The hba1 plants also had growth defects and elevated levels of anthocyanin in their petioles. However, sugar-related changes in levels of several mRNAs other than beta-amylase mRNA were unaffected in hba1 plants, suggesting that only a subset of sugar-regulated genes is under the control HBA1.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge