English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Archives of Pharmacal Research 2012-Jun

Neuroprotection of Ilex latifolia and caffeoylquinic acid derivatives against excitotoxic and hypoxic damage of cultured rat cortical neurons.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Joo Youn Kim
Hong Kyu Lee
Bang Yeon Hwang
SeungHwan Kim
Jae Kuk Yoo
Yeon Hee Seong

Keywords

Abstract

Ilex latifolia (Aquifoliaceae), one of the primary components of "Ku-ding-cha", has been used in Chinese folk medicine to treat headaches and various inflammatory diseases. A previous study demonstrated that the ethanol extract of I. latifolia could protect against ischemic apoptotic brain damage in rats. The present study investigated the protective activity of I. latifolia against glutamate-induced neurotoxicity using cultured rat cortical neurons in order to explain a possible mechanism related to its inhibitory effect on ischemic brain damage and identified potentially active compounds from it. Exposure of cultured cortical neurons to 500 μM glutamate for 12 h triggered neuronal cell death. I. latifolia (10-100 μg/mL) inhibited glutamate-induced neuronal death, elevation of intracellular calcium ([Ca(2+)](i)), generation of reactive oxygen species (ROS), the increase of a pro-apoptotic protein, BAX, and the decrease of an anti-apoptotic protein, BcL-2. Hypoxia-induced neuronal cell death was also inhibited by I. latifolia. 3,4-Dicaffeoylquinic acid (diCQA), 3,5-diCQA, and 3,5-diCQA methyl ester isolated from I. latifolia also inhibited the glutamate-induced increase in [Ca(2+)](i), generation of ROS, the change of apoptosis-related proteins, and neuronal cell death; and hypoxia-induced neuronal cell death. These results suggest that I. latifolia and its active compounds prevented glutamate-induced neuronal cell damage by inhibiting increase of [Ca(2+)](i), generation of ROS, and resultantly apoptotic pathway. In addition, the neuroprotective effects of I. latifolia on ischemia-induced brain damage might be associated with the anti-excitatory and anti-oxidative actions and could be attributable to these active compounds, CQAs.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge