English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Ecotoxicology and Environmental Safety 2019-Jun

Nickel uptake and distribution in Agropyron cristatum L. in the presence of pyrene.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Xinying Zhang
Jing Chen
Xiaoyan Liu
Mingjing Gao
Xueping Chen
Cheng Huang

Keywords

Abstract

PAHs affect the uptake of heavy metal by plants. The uptake pathway, distribution and detoxification of nickel (Ni) in Agropyron cristatum L. (A. cristatum) were investigated in the presence of pyrene in this study. Most of Ni was adsorbed on the cell wall in the insoluble phosphate (57.31-72.18%) form and pectate and protein integrated (38.27-38.98%) form. Ni was transferred to the organelle (from 37.84% to 40.52%) in the presence of pyrene. The concentration of Ni in A. cristatum decreased by 27.42%; it was affected by the ATP production inhibitor and 29.49% by the P-type ATPase inhibitor. The results indicated that the uptake of Ni related closely to the synthesis and decomposition of ATP and was an active uptake process. Contents of phytochelatins (PCs) in A. cristatum in Ni contaminated soils increased by 19.97%, and an additional 4.13% increase occurred in the presence of pyrene when compared to single Ni contamination. The content of malic acid in A. cristatum was the highest for 262.78 mg g-1 in shoots and 46.81 mg g-1 in roots with Ni contamination. Besides, acetic acid in shoots and roots increased by 40.25% and 102.63% with Ni contamination, and by 61.59% and 185.71% with Ni-pyrene co-contamination. This study preliminarily explored the inhibitory mechanism of pyrene on plant uptake of Ni.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge