English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biological Chemistry 2011-May

Nicotinamide mononucleotide adenylyltransferase is a stress response protein regulated by the heat shock factor/hypoxia-inducible factor 1alpha pathway.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Yousuf O Ali
Ryan McCormack
Andrew Darr
R Grace Zhai

Keywords

Abstract

Stress responses are cellular processes essential for maintenance of cellular integrity and defense against environmental and intracellular insults. Neurodegenerative conditions are linked with inadequate stress responses. Several stress-responsive genes encoding neuroprotective proteins have been identified, and among them, the heat shock proteins comprise an important group of molecular chaperones that have neuroprotective functions. However, evidence for other critical stress-responsive genes is lacking. Recent studies on the NAD synthesis enzyme nicotinamide mononucleotide adenylyltransferase (NMNAT) have uncovered a novel neuronal maintenance and protective function against activity-, injury-, or misfolded protein-induced degeneration in Drosophila and in mammalian neurons. Here, we show that NMNAT is also a novel stress response protein required for thermotolerance and mitigation of oxidative stress-induced shortened lifespan. NMNAT is transcriptionally regulated during various stress conditions including heat shock and hypoxia through heat shock factor (HSF) and hypoxia-inducible factor 1α in vivo. HSF binds to nmnat promoter and induces NMNAT expression under heat shock. In contrast, under hypoxia, HIF1α up-regulates NMNAT indirectly through the induction of HSF. Our studies provide an in vivo mechanism for transcriptional regulation of NMNAT under stress and establish an essential role for this neuroprotective factor in cellular stress response.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge