English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1988-Mar

Nitrate absorption by corn roots : inhibition by phenylglyoxal.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
K S Dhugga
J G Waines
R T Leonard

Keywords

Abstract

Nitrate transport in excised corn (Zea mays L.) roots was inhibited by phenylglyoxal, but not by 4,4'-diisothiocyano-2,2'-stilbene disulfonic acid (DIDS) or fluorescein isothiocyanate (FITC). Inhibition of nitrate uptake by a 1-hour treatment with 1 millimolar phenylglyoxal was reversed after 3 hours, which was similar to the time needed for induction of nitrate uptake. If induction of nitrate uptake occurs by de novo synthesis of a nitrate carrier, then the resumption of nitrate uptake in the inhibitor-treated roots may occur because of turnover of phenylglyoxal-inactivated nitrate carrier proteins. All three chemicals inhibited chloride uptake to varying degrees, with FITC being the strongest inhibitor. While inhibition due to DIDS was reversible within 30 minutes, both FITC and phenylglyoxal showed continued inhibition of chloride uptake for up to 3 hours after removal from the uptake solution. Assuming that the anion transporter polypeptide(s) carries a positive charge density at or near the transport site, the results indicate that the nitrate carrier does not carry any lysyl residues that are accessible to DIDS or FITC, whereas the chloride carrier does. Both chloride and nitrate carriers, however, seem to possess arginyl residues that are accessible to phenylglyoxal.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge