English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Physiologia Plantarum 2014-Oct

Nitric oxide and hydrogen peroxide are important signals mediating the allelopathic response of Arabidopsis to p-hydroxybenzoic acid.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Yanlong Guan
Huaming Lin
Lan Ma
Yongping Yang
Xiangyang Hu

Keywords

Abstract

Both nitric oxide (NO) and hydrogen peroxide (H2 O2 ) are important signals that mediate plant response to environmental stimulation. Their role in plants' allelopathic interactions has also been reported, but the underlying mechanism remains little understood. p-Hydroxybenzoic acid (pHBA) has been proposed to be an allelopathic chemical. Here, we found that pHBA at 0.4 mM efficiently suppressed Arabidopsis growth. Meanwhile, pHBA rapidly induced the accumulation of NO and H2 O2 , where such effect could be reversed by NO or H2 O2 metabolism inhibitors or scavengers. Also, pHBA-induced NO and H2 O2 could be compromised in NO synthesis mutants noa1, nia1 and nia2, or H2 O2 metabolism mutant rbohD/F, but suppressing NO accumulation with a NO synthesis inhibitor or using NO synthesis-related mutants did not reduce pHBA-induced H2 O2 accumulation. Furthermore, we found that the effect of pHBA on allelopathic inhibition of growth was aggravated in NO/H2 O2 metabolism-related mutants or reducing NO/H2 O2 by different inhibitors, whereas the addition of an NO/H2 O2 donor could partly relieve the inhibitory effect of pHBA on the growth of wild type. However, adding only an NO donor, but not low concentration of H2 O2 as the donor, could relieve the inhibitory effect of pHBA on root growth in NO metabolism mutants. On the basis of these results, we propose that both NO and H2 O2 are important signals that mediate Arabidopsis response to the allelopathic chemical pHBA, where during this process H2 O2 may work upstream of the NO signal.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge