English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental and Molecular Mutagenesis 2004

Nitric oxide and p53 in cancer-prone chronic inflammation and oxyradical overload disease.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Julie E Goodman
Lorne J Hofseth
S Perwez Hussain
Curtis C Harris

Keywords

Abstract

Nitric oxide (NO(.)), which is generated under chronic inflammatory conditions that predispose individuals to cancer, has paradoxical effects. NO(.) can activate p53, which can result in anti-carcinogenic effects, or it can be mutagenic and increase cancer risk. We explored the mechanisms by which NO(.) induced p53 activation in vitro and found that NO(.) induced p53 accumulation and phosphorylation, particularly at ser-15, via ATM and ATR kinases, which then led to cell cycle arrest at G(2)/M. We next examined proteins in these pathways in both inflamed and normal human colon tissue. Inducible nitric oxide synthase (iNOS) levels and p53-P-ser15 levels were positively correlated with the degree of inflammation and with each other. Additionally, the p53 targets, HDM-2 and p21 (WAF1), were present in ulcerative colitis (UC) colon, but undetectable in normal colon, consistent with activated p53. We also found higher p53 mutant frequencies of both G:C --> A:T transitions at the CpG site of codon 248 and C:G --> T:A transitions at codon 247 in lesional colon tissue from UC cases versus nonlesional tissue from these cases or colon tissue from normal adult controls. Consistent with nitrosative stress and the deamination of 5-methylcytosine, p53 mutations were also detected in sporadic colon cancer tissue and were associated with iNOS activity in these tissues. These studies identified a potential mechanistic link between NO(.) and p53 in UC and sporadic colon cancer.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge