English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Naunyn-Schmiedeberg's Archives of Pharmacology 2002-Oct

Nitric oxide is not involved in the endotoxemia-induced alterations in Ca2+ and ryanodine responses in mouse diaphragms.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Shing-Hwa Liu
Jiun-Li Lai
Rong-Sen Yang
Shoei-Yn Lin-Shiau

Keywords

Abstract

Lipopolysaccharide (LPS, endotoxin)-induced diaphragmatic contractile dysfunction and sarcolemmal injury in animals has been identified. However, the precise nature of sepsis-related alterations in diaphragm myofiber function and the activity of Ca(2+) release from sarcoplasmic reticulum of skeletal muscle remain unclear. The present study investigated the in vivo effects of LPS on the Ca(2+)-dependent mechanical activity and ryanodine response in mouse diaphragm and Ca(2+) release from isolated sarcoplasmic reticulum membrane vesicles, and aimed to examine the role of nitric oxide (NO) in these responses. When diaphragms were bathed in a solution that was Cl(-)-free, Na(+)-free, but contained high K(+), a Ca(2+)-induced contracture was elicited. Increases in external Ca(2+) concentration produced increases in peak tension of Ca(2+)-induced contracture in control diaphragm, while a decrease was seen in endotoxemic diaphragm. Ryanodine induced a marked contracture in control diaphragms, which was diminished after endotoxemia. This finding is correlated with the decrease of ryanodine-induced Ca(2+) release and the suppression of [(3)H]ryanodine binding on the isolated SR of the skeletal muscle from LPS-treated rats. In mice treated with LPS significantly increased levels of plasma nitrite and serum TNF-alpha were observed, changes inhibited by aminoguanidine [an inhibitor of inducible NO synthase (iNOS)] and pentoxifylline (an inhibitor of tumor necrosis factor-alpha formation), respectively. Moreover, LPS treatment resulted in a significant expression of mRNA for iNOS in mouse diaphragms. The inhibitory effects on Ca(2+)- and ryanodine responses by LPS could be prevented by treatment with polymyxin B (LPS neutralizer) and pentoxifylline, but not by treatment with dexamethasone, N(G)-nitro- L-arginine or aminoguanidine (NOS inhibitors). These results imply that the NO-related pathway may not be involved in the dysfunction of the Ca(2+) release mechanism in the sarcoplasmic reticulum of mouse diaphragm during endotoxemia.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge