English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Plant Physiology 2018-Feb

Non-plastidial expression of a synthetic insect geranyl pyrophosphate synthase effectively increases tobacco plant biomass.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Gui Li
Jing Xi
Xiaoming Ji
Ming-Zhuo Li
De-Yu Xie

Keywords

Abstract

Designing effective synthetic genes of interest is a fundamental step in plant synthetic biology for biomass. Geranyl pyrophosphate (diphosphate) synthase (GPPS) catalyzes a bottleneck step toward terpenoid metabolism. We previously designed and synthesized a plant (Arabidopsis thaliana)-insect (Myzus persicae, Mp) GPPS- human influenza hemagglutinin (HA) cDNA, namely PTP-MpGPPS-HA (or PTP-sMpGPPS-HA, s: synthetic), to localize the protein in plastids and improve plant biomass. To better understand the effects of different subcellular localizations on plant performance, herein we report PTP-sMpGPPS-HA re-design to synthesize a new MpGPPS-HA cDNA, namely sMpGPPS-HA, to express a non-plastidial sMpGPPS-HA protein. The sMpGPPS-HA cDNA driven by a 2 × S 35S promoter was introduced into Nicotiana tabacum Xanthi. PTP-MpGPPS-HA and PMDC84 vector transgenic plants were also generated as positive and negative controls, respectively. Eighteen to twenty transgenic T0 lines were generated for each sMpGPPS-HA, PTP-sMpGPPS-HA, and PMDC84. Transcriptional genotyping analysis demonstrated the expression of sMpGPPS-HA in transgenic plants. Confocal microscopy analysis of transgenic progeny demonstrated the non-plastidial localization of sMpGPPS-HA. Growth of T1 transgenic and wild-type control plants showed that the expression of sMpGPPS-HA effectively increased plant height by 50-80%, leaf numbers and sizes, and dry biomass by 60-80%. Calculation of the vegetative growth rates showed that the expression of sMpGPPS-HA increased plant height each week. Moreover, sMpGPPS-HA expression promoted early flowering and reduced leaf carotenoid levels. In conclusion, non-plastidial expression of the novel sMpGPPS-HA was effective for improving tobacco growth and biomass. Our data indicate that research examining different subcellular localizations facilitates a better understanding of in planta functions of proteins encoded by synthetic cDNAs.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge