English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Mass Spectrometry 2014-May

Nontargeted GC-MS approach for volatile profile of toasting in cherry, chestnut, false acacia, and ash wood.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Brígida Fernández de Simón
Miriam Sanz
Estrella Cadahía
Enrique Esteruelas
Angel María Muñoz

Keywords

Abstract

By using a nontargeted GC-MS approach, 153 individual volatile compounds were found in extracts from untoasted, light toasted and medium-toasted cherry, chestnut, false acacia, as well as European and American ash wood, used in cooperage for aging wines, spirits and other beverages. In all wood types, the toasting provoked a progressive increase in carbohydrate derivatives, lactones and lignin constituents, along with a variety of other components, thus increasing the quantitative differences among species with the toasting intensity. The qualitative differences in the volatile profiles allow for identifying woods from cherry (being p-anisylalcohol, p-anisylaldehyde, p-anisylacetone, methyl benzoate and benzyl salicylate detected only in this wood), chestnut (cis and trans whisky lactone) and false acacia (resorcinol, 3,4-dimethoxyphenol, 2,4-dihydroxy benzaldehyde, 2,4-dihydroxyacetophenone, 2,4-dihydroxypropiophenone and 2,4-dihydroxy-3-methoxyacetophenone), but not those from ash, because of the fact that all compounds present in this wood are detected in at least one other. However, the quantitative differences can be clearly used to identify toasted ash wood, with tyrosol being most prominent, but 2-furanmethanol, 3- and 4-ethylcyclotene, α-methylcrotonolactone, solerone, catechol, 3-methylcatechol and 3-hydroxybenzaldehyde as well. Regarding oak wood, its qualitative volatile profile could be enough to distinguish it from cherry and acacia woods, and the quantitative differences from chestnut (vanillyl ethyl ether, isoacetovanillone, butirovanillone, 1-(5-methyl-2-furyl)-2-propanone and 4-hydroxy-5,6-dihydro-(2H)-pyran-2-one) and ash toasted woods.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge