English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neurotrauma 2016-Oct

Norepinephrine Protects Cerebral Autoregulation and Reduces Hippocampal Necrosis after Traumatic Brain Injury via Blockade of ERK MAPK and IL-6 in Juvenile Pigs.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
William M Armstead
John Riley
Monica S Vavilala

Keywords

Abstract

Traumatic brain injury (TBI) contributes to morbidity in children, and boys are disproportionately represented. Cerebral autoregulation is impaired after TBI, contributing to poor outcome. Cerebral perfusion pressure (CPP) is often normalized by use of vasoactive agents to increase mean arterial pressure (MAP). In prior studies of 1- to 5-day-old newborn piglets, we observed that norepinephrine (NE) preferentially protected cerebral autoregulation and prevented hippocampal necrosis in females but not males after fluid percussion injury (FPI). The ERK isoform of mitogen activated protein kinase (MAPK) produces hemodynamic impairment after FPI, but less is known about the role of the cytokine interleukin-6 (IL-6). We investigated whether NE protects autoregulation and limits histopathology after FPI in older juvenile (4-week-old) pigs and the role of ERK and IL-6 in that outcome by sex. Results show that NE significantly protects autoregulation and prevents reduction in cerebral blood flow (CBF) in both male and female juvenile pigs after FPI; co-administration of the ERK antagonist U 0126 with NE fully protects both indices of outcome. Papaverine induced dilation was unchanged by FPI and NE. NE blunted ERK MAPK and IL-6 upregulation in both males and females after FPI. NE attenuated loss of neurons in CA1 and CA3 hippocampus of males and females after FPI. These data indicate that NE protects autoregulation and limits hippocampal neuronal cell necrosis via blockade of ERK and IL-6 after FPI in both male and female juvenile pigs. These data suggest that use of NE to improve outcome after TBI is both sex and age dependent.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge