English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Nippon Ganka Gakkai zasshi 2013-Nov

[Novel gene transfer using micellar nanovectors inhibits choroidal neovascularization].

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Aya Aoki

Keywords

Abstract

The treatment of age-related macular degeneration (AMD) caused by choroidal neovascularization (CNV) is difficult. More effective therapy for regulating CNV is needed. We demonstrated that intravenous nonviral vectors based on the complex of plasmid DNA with synthetic cationic polymers accumulate in choroidal neovascularization (CNV) with high efficiency through an enhanced the permeability and retention (EPR) effect. This review shows the results of in vivo angiogenic control by intravenous injection of a polyplex micelle-encapsulating plasmid vector using a mice CNV model. Polyion complex (PIC) micelles consisting of plasmid DNA and poly (ethylene glycol)-b-poly (N-[N-(2-aminoethyl)-2-aminoethyl] aspartamidef block copolymers [PEG-b-PAsp (DET)] were used. These show minimal cytotoxicity and high transfection efficiency both in vitro and in vivo, and have been utilized for gene therapy against a mouse corneal neovascularization model by local administration of plasmid-encoding soluble vascular endothelial growth factor receptor 1 (soluble Fms-like tyrosine kinase-1: sFlt-1). Transfection of plasmid-expressing sFlt-1 with PEG-C6-P[Asp (DET)] polyplex micelles by intravenous injection into mice CNV models showed significant inhibition of developing CNV. We found that nonviral gene therapy has significant potential for regulation of CNV using plasmids with PEG-C6-P [Asp (DET)] polyplex micelles.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge