English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biological Chemistry 2002-Feb

Novel pathogenic mechanisms of congenital insensitivity to pain with anhidrosis genetic disorder unveiled by functional analysis of neurotrophic tyrosine receptor kinase type 1/nerve growth factor receptor mutations.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Claudia Miranda
Michela Di Virgilio
Silvia Selleri
Giuseppe Zanotti
Sonia Pagliardini
Marco A Pierotti
Angela Greco

Keywords

Abstract

Congenital insensitivity to pain with anhidrosis (CIPA) is a rare genetic disease characterized by absence of reaction to noxious stimuli and anhidrosis. The genetic bases of CIPA have remained long unknown. A few years ago, point mutations affecting both coding and noncoding regions of the neurotrophic tyrosine receptor kinase type 1 (NTRK1)/nerve growth factor receptor gene have been detected in CIPA patients, demonstrating the implication of the nerve growth factor/NTRK1 pathway in the pathogenesis of the disease. We have previously shown that two CIPA mutations, the G571R and the R774P, inactivate the NTRK1 receptor by interfering with the autophosphorylation process. We have extended our functional analysis to seven additional NTRK1 mutations associated with CIPA recently reported by others. Through a combination of biochemical and biological assays, we have identified polymorphisms and pathogenic mutations. In addition to the identification of residues important for NTRK1 activity, our analysis suggests the existence of two novel pathogenic mechanisms in CIPA: one based on the NTRK1 receptor processing and the other acting through the reduction of the receptor activity.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge