English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Ocular Surface 2012-Jul

Nuclear Factor-κB: central regulator in ocular surface inflammation and diseases.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Wanwen Lan
Andrea Petznick
Suzi Heryati
Maula Rifada
Louis Tong

Keywords

Abstract

The nuclear factor-κB (NF-κB) is a key transcription factor pathway that is responsible for many key biological processes, such as inflammation, apoptosis, stress response, corneal wound healing, angiogenesis, and lymphangiogenesis. Numerous recent studies have investigated NF-κB in the context of ocular surface disorders, including chemical injury, ultraviolet radiation-induced injury, microbial infections, allergic eye diseases, dry eye, pterygium, and corneal graft rejection. The purpose this article is to summarize key findings with regard to the pathways regulating NF-κB and processes governed by the NF-κB pathway. In the innate defense system, NF-κB is involved in signaling from the toll-like receptors 2, 3, 4, 5 and 7, which are expressed in conjunctival, limbal, and corneal epithelial cells. These determine the ocular responses to infections, such as those caused by Pseudomonas aeruginosa, Staphylococcus aureus, adenovirus, and herpes simplex-1 virus. Natural angiogenic inhibitors enhance NF-κB, and this may occur through the mitogen-activated protein kinases and peroxisome proliferator-activated receptor γ. In alkali injury, inhibition of NF-κB can reduce corneal angiogenesis, suggesting a possible therapeutic strategy. The evaluation of NF-κB inhibitors in diseases is also discussed, including emodin, besifloxacin, BOL-303242-X (mapracorat), thymosin-β4, epigallocatechin gallate, Perilla frutescens leaf extract and IKKβ-targeting short interfering RNA.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge